Weak coupling limit of 2 + 1, SU(2) lattice gauge theory and mass gap

Sreeraj T P

The Institute of Mathematical Sciences.

25 July, 2018 Lattice 2018

Work done with: Ramesh Anishetty

Introduction

- Attempts to describe Yang mills theory in terms of Gauge invariant Wilson loops.
 - Non-local.
 - Over-complete.
- We will describe gauge theory in 'dual' electric loop representation.
 - local
 - complete.

The plan of the talk.

- 1 A quick look at Hamiltonian LGT .
- Point split lattice PSlattice.
- 3 Local gauge invariant states.
- Path integral in phase space.
- Weak coupling limit and mass gap.

Hamiltonian SU(2) Gauge theory on a lattice

Hamiltonian SU(2) Gauge theory on a lattice continued...

• Hamiltonian is:

$$H = \frac{\tilde{g}^2}{2} \sum_{links} E^a E^a + \frac{1}{2g^2} \sum_{plaq} [2 - Tr U_p]$$

Physical states are gauge invariant.

Gauss Law Constraints! $\sum_{i} \left[E_{L}^{a}(i) + E_{R}^{a}(i) \right] |\psi_{phys}\rangle = 0$

- Gauss law operator generates gauge transformations at each site.
- Gauss law says: at each site, incoming electric flux = outgoing electric flux

Gauge invariant, local Hilbert space

$$E_1$$
 E_1 E_1 E_2 E_3 E_4 E_5 E_5 E_6 E_7 E_7

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{1} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{1} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{1} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{1}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{1} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{1} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{1} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

$$(\vec{E}_{1} + \vec{E}_{2}) + (\vec{E}_{2} + \vec{E}_{2}) = 0$$

(Ramesh Anishetty and H. S. Sharatchandra, PRL, 65, 813 (1990))

Splitting of point

- Split the site into two sites and introduce a new link.
- Introduce Link operator and link constraint at the new link.
- All sites have 3 links and Gauss law constraint at each site.
- Dynamics is much more transparent on the split lattice.

(Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018))

PS-lattice=original lattice

• PS lattice reduces to the original lattice by a gauge fixing.

PS-lattice

• Lattice after splitting each site:

 $\bullet \ \mathsf{plaquette} \to \mathsf{octagon}$

ullet 3 possible point splitting schemes at each site o large number of unitarily equivalent Hilbert spaces.

Schwinger Bosons.

 \bullet E_L , U, $E_R \rightarrow a_\alpha^\dagger(L)$, $a_\alpha^\dagger(R)$; $a_{\alpha}^{\dagger}(L/R)$ — Harmonic oscillator doublets!

$$E_L^a \equiv a^\dagger(L) \qquad N_L = N_R \qquad a_\alpha^\dagger(R) \\ E_L^a \qquad E_L^2 = E_R^2 \qquad E_R^a$$

$$E_L^a \equiv a^\dagger(L) \frac{\sigma^a}{2} a(L), \qquad E_R^a \equiv a^\dagger(R) \frac{\sigma^a}{2} a(R).$$

$$E^2 = \frac{N}{2} \left(\frac{N}{2} + 1 \right)$$

$$U = \underbrace{\frac{1}{\sqrt{\hat{N}+1}} \left(\begin{array}{cc} a_1^{\dagger}(L) & a_1(L) \\ -a_1^{\dagger}(L) & a_2(L) \end{array} \right)}_{U_L} \underbrace{\left(\begin{array}{cc} a_1^{\dagger}(R) & a_2^{\dagger}(R) \\ a_2(R) & -a_1(R) \end{array} \right) \frac{1}{\sqrt{\hat{N}+1}}}_{U_R} \left(prepotential \ rep \right)$$

Manu Mathur, J.phys A(2005), Phys. Lett. B (2007), Nucl. Phys. B(2007)

Ramesh Anishetty, Manu Mathur, Indrakshi. R, JMP(2009), J.Phys(2009), JMP(2010)

•Under gauge transformations:

$$U o \Lambda_L U \Lambda_R^\dagger$$
 $a(L) o \Lambda_L a(L) \quad , \quad a(R) o \Lambda_R a(R) o R \quad ext{$: $ } ext{$: $ } ex$

Gauge invariant basis with Schwinger Bosons

At a 3-vertex:

$$1 \frac{I_{1\bar{1}}}{I_{31}} \bar{1}$$

• Normalized gauge invariant states at a 3-vertex:

$$|I_{1\bar{1}},I_{\bar{1}3},I_{31}\rangle = \frac{\left(a^{\dagger}[1]\epsilon a^{\dagger}[\bar{1}]\right)^{l_{1\bar{1}}} \left(a^{\dagger}[\bar{1}]\epsilon a^{\dagger}[3]\right)^{l_{\bar{1}3}} \left(a^{\dagger}[3]\epsilon a^{\dagger}[1]\right)^{l_{31}}}{\sqrt{\left(l_{1\bar{1}}+l_{31}+l_{\bar{1}3}+1\right)!\left(l_{1\bar{1}}\right)!\left(l_{31}\right)!\left(l_{23}\right)!}} |0\rangle \equiv |n_{1},n_{\bar{1}},n_{3}=m\rangle$$

• $n_1, n_{\bar{1}}, n_3$ gives the number of harmonic oscillators on the link $1, \bar{1}, 3$.

$$n_1 = l_{12} + l_{31}$$
 $n_2 = l_{23} + l_{12}$ $n_3 = m = l_{31} + l_{23}$

(Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018))

- Equivalent descriptions based on:
 - \bullet I_{ij} satisfying the link condition :

$$I_{31}[a] + I_{\overline{1}3}[a] = n_3(\equiv m) = I_{32}[b] + I_{\overline{2}3}[b]$$

 l_{ij} into a link = l_{ij} going out \implies Closed Electric flux loops.

② n_i , m -local quantum numbers satisfying triangle inequalities at each site:

$$|n_i - n_{\overline{i}}| \leq m \leq n_i + n_{\overline{i}}$$

Action of Hamiltonian on the number basis.

- $E_i^2 = \frac{\hat{N}_i}{2} \left(\frac{\hat{N}_i}{2} + 1 \right)$ diagonal. $TrU_p = TrU_o$ changes n_i, m at each link along a plaquette by ± 1 .

Phases

• We define phase operators satisfying : $[\hat{N}_i, e^{i\hat{\phi}}] = e^{i\hat{\phi}}$ $[\hat{M}, e^{i\hat{\chi}}] = e^{i\hat{\chi}}$

$$TrU_{o}|n_{i},n_{\overline{i}},m\rangle = Tr\prod_{oct} \underbrace{\begin{pmatrix} e^{i\hat{\chi}} & 0 \\ 0 & e^{-i\hat{\chi}} \end{pmatrix} \begin{pmatrix} D & F \\ F & D \end{pmatrix} \begin{pmatrix} e^{i\hat{\phi}} & 0 \\ 0 & e^{-i\hat{\phi}} \end{pmatrix}}_{\hat{P}=\hat{L}_{\chi}\hat{V}\hat{L}_{\phi}} |n_{i},n_{\overline{i}},m\rangle$$

$$D = \sqrt{\frac{(n_i + n_{\bar{i}} + m + 3)(n_i - n_{\bar{i}} + m + 1)}{4(m+1)(n_i + 1)}} \quad F = \sqrt{\frac{(n_{\bar{i}} - n_i + m + 1)(n_{\bar{i}} + n_i - m + 1)}{4(m+1)(n_i + 1)}}$$

Path integral in phase space

- Path integral is constructed in phase space by usual time slicing and sandwiching eigenbasis of the number and phase basis.
- Path integral in phase space is :

$$Z = \int D\phi_i D\chi \sum_{n_1,n_2,m}^{'} e^{-\int dt \left[\sum_{\tilde{s}} \left[i(n_1\dot{\phi}_1 + n_2\dot{\phi}_2 + m\dot{\chi}) + \frac{\tilde{g}^2}{2}\left(n_1^2(s) + n_2^2(s)\right)\right] + \frac{1}{2g^2}\sum_{\text{oct}} \left[2 - \text{Tr}\left(\prod_{\text{oct}} P\right)\right]\right]}$$

 n_1, n_2, m should satisfy triangle inequality.

Weak coupling analysis

ullet When g o 0, $\langle n_1
angle=\langle n_2
angle=N,\ \langle m
angle=2N$, N large , ϕ_i,χ small gives

$$P = \begin{pmatrix} e^{i\hat{\chi}} & \\ & e^{-i\hat{\chi}} \end{pmatrix} \begin{pmatrix} D & F \\ F & D \end{pmatrix} \begin{pmatrix} e^{i\hat{\phi}} & \\ & e^{-i\hat{\phi}} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(1)

$$D = \sqrt{\frac{(n_i + n_{\bar{i}} + m + 3)(n_i - n_{\bar{i}} + m + 1)}{4(m+1)(n_i + 1)}} \sim 1$$

$$F = \sqrt{\frac{(n_{\bar{i}} - n_i + m + 1)(n_{\bar{i}} + n_i - m + 1)}{4(m+1)(n_i + 1)}} \sim \frac{1}{2\sqrt{N}}$$

attains the minimum of the magnetic term.

Splitting fields into mean field and fluctuations.

$$n_i = N + \tilde{n}_i$$
 $m = 2N + \tilde{m}$
 $D \sim o(1)$ $F \sim o(1/2\sqrt{N})$ (2)

• Redefine $\phi_i, \chi \to g\phi_i, g\chi$.

Weak coupling Vacuum

•
$$\langle n_1 \rangle = \langle n_2 \rangle = N, \langle m \rangle = 2N$$
 \Longrightarrow all electric flux into a site in x direction goes to y direction and vice versa
 \Longrightarrow small electric loops.

• Vacuum dominated by small (spatially) electric flux loops containing huge fluxes.

Fluctuations

• Dominant fluctuations:

• sub dominant fluctuations of order $\frac{1}{N}$:

+...

Each flip gives a factor of $\frac{1}{2\sqrt{N}}$.

• We now make an expansion in $\frac{1}{N}$ and g. After a few field redefinitions gives :

$$\left[2 - Tr\left(\prod P\right)\right] \approx \left[\frac{1}{4N^2}\tilde{m}^2 + V(\phi_1, \phi_2, \chi)\right]$$
 (3)

$$\begin{split} V(\phi_1,\phi_2,\chi) &= \frac{g^2}{2} \left\{ \left[\left(\Delta_1 \left(\phi_2 - \frac{1}{2} \Delta_2 \chi \right) - \Delta_2 \left(\phi_1 + \frac{1}{2} \Delta_1 \chi \right) \right) \right]^2 \right. \\ &\quad + \left. \frac{1}{N} \left[16 \left[\left(\phi_1 + \frac{1}{2} \Delta_1 \chi \right)^2 + \left(\phi_2 - \frac{1}{2} \Delta_2 \chi \right)^2 + \chi^2 \right] \right. \\ &\quad \left. - \left[\Delta_1 \left(\phi_2 - \frac{1}{2} \Delta_2 \chi \right) - \Delta_2 \left(\phi_1 + \frac{1}{2} \Delta_1 \chi \right) + \Delta_1 \Delta_2 \chi \right]^2 - \left(\Delta_1 \Delta_2 \chi \right)^2 \right] \right\} \end{split}$$

$$=\frac{g^{2}}{2}\left\{\left(\Delta_{1}\phi'_{2}-\Delta_{2}\phi'_{1}\right)^{2}+\frac{1}{N}\left[16\left(\phi'_{1}^{2}+\phi'_{2}^{2}+\chi^{2}\right)-\left(\Delta_{1}\phi'_{2}-\Delta_{2}\phi'_{1}+\Delta_{1}\Delta_{2}\chi\right)^{2}\right.\right.\\ \left.-\left(\Delta_{1}\Delta_{2}\chi\right)^{2}\right]$$

$$\left.-\left(\Delta_{1}\Delta_{2}\chi\right)^{2}\right]$$

$$\left.-\left(\Delta_{1}\Delta_{2}\chi\right)^{2}\right]$$

$$\left.-\left(\Delta_{1}\Delta_{2}\chi\right)^{2}\right]$$

$$\left.-\left(\Delta_{1}\Delta_{2}\chi\right)^{2}\right]$$

$$\left.-\left(\Delta_{1}\Delta_{2}\chi\right)^{2}\right]$$

• Performing the Gaussian summation over \tilde{n}_1 , \tilde{n}_2 , \tilde{m} , and making the transformation: $\phi_i' = \frac{1}{\sqrt{-\Delta^2}} (\Delta_i \eta + \epsilon_{ij} \delta_j \psi)$ Path integral becomes:

$$Z = \int D\psi D\eta D\chi \ e^{-\int dt \sum\limits_{sites} \left[\frac{2g^2}{g^2} \left(\dot{\eta}^2 + \dot{\psi}^2\right) + 2g^4 N^2 \dot{\chi}^2 + V'(\psi,\eta,\chi)\right] + o(a^4)}$$

$$V'(\psi, \eta, \chi) = \left\{ \frac{1}{4} (\Delta \psi)^2 + \frac{1}{4N} \left[16(\eta^2 + \psi^2 + \chi^2) - (\Delta \psi)^2 \right] \right\}$$

• Casting ψ in canonical form by $\psi \to \sqrt{2}\psi$ gives:

$$\left(\frac{g}{\tilde{g}}\right)^2 = \frac{a^2}{8}$$

$$\frac{16}{N} = M^2 a^2 \qquad \qquad N = \frac{16}{M^2 \sigma^4}$$

Dispersion relations.

• The euclidean inverse propagators in the energy-momentum space to the leading order are

$$\psi : p_0^2 + M^2 + \vec{p}^2 + O(a^2)$$

$$\eta : p_0^2 + M^2 + O(a^4)$$

$$\chi : M^2 + O(a^4); p_0 = 0.$$

- ullet ψ is a relativistic particle with mass M
- ullet η may propagate due to higher order corrections.
- χ do not fluctuate.

On going work

- Calculation of string tension.
- 2 Extending the same methods to higher dimensions.
- Inclusion of fermions.
- Extension to SU(3)

Thanks

Thank You for your Attention.